
International Journal of  Theoretical Physics, Vol. 33, No. 2, 1994 

High-Frequency Sum-Rule Expansion of 
Relativistic Quasi-One-Dimensional Quantum 
Plasma Dielectric Tensor. II: Spin Effect 

R. O. Genga ~ 
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A high-frequency sum rule for all elements of the relativistic quasi-one-dimen- 
sional quantum plasma with spins at T = 0 K are derived. It is found that the 
spin either enhances or reduces the frequency of oscillation, depending on the 
orientation of the spin to the external magnetic field. 

L INTRODUCTION 

High-frequency sum-rule expansions of the full response tensor of 
nonrelativistic and relativistic quasi-one-dimensional quantum plasmas 
with spinless particles at T = 0 K  are known (Genga, 1988a, 1992a,b). 
However, for quantum particles with spin the only result pertains to the 
nonrelativistic case (Genga, 1992c). 

In this work I consider, as in the spinless particle situation (Genga, 
1992d), the high-frequency behavior of the full dielectric tensor in an 
anisotropic system of  relativistic quantum plasmas with spin particles at 
T = 0 K in the presence of an external magnetic field up to order o9-5. I 
restrict my treatment to a situation where a strongly magnetized, strongly 
coupled electron plasma is being generated in a laboratory as in the 
Malmberg-O'Neil  experiment. The radiation effect in such situations is 
negligible, unlike in an astrophysical plasma; the plasma density is assumed 
to be of  the order of  1029 particles per unit volume. The Hamiltonian 
formalism is applied to derive the high-frequency sum rules as in the 
above-mentioned nonrelativistic case. Due to interaction it is known 
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(Goldstone, 1957; Jancovici, 1962; Genga, 1992a,b,d) that an electron may 
jump from one state inside the Fermi sphere to an unoccupied state, 
thereby creating a hole known as a "Fermi hole." Further, the jump of an 
electron from a negative-energy state to an occupied positive-electron- 
energy state leads to the creation of a positron-electron pair with a 
positron as a hole known as a "Dirac hole." The interaction is therefore 
due to both spin and Coulomb interactions. Hence, the system is described 
by a set of unperturbed states, which allow for positrons and electrons. 

I review the method of derivation below in this section. In Section 2 the 
general relations between the external or current-current  response function 
sum-rule coefficients and those of  the dielectric tensor are reviewed; further, 
the exact co-2, co-3, co-4, and co-5 sum-rule coefficients for the transverse 
element are obtained. The long-wavelength limit of  the results and the 
possible implications for the dispersion relation of  the high-frequency 
plasma modes are considered in Sections 3 and 4, respectively. 

The total electron current at point X1 is given by 

e ~,, [Vif(x - xi) + ~(x - xi)V/] (1) j ( x , )  = 

where g~ is the group velocity of  the free particle i with spin. The total energy 
for such a particle is given by (Johnson and Lipmann, 1949; Berestetskii et 
al., 1978; Baym, 1974; Sakurai, 1987; Bjorken and Drell, 1964) 

E = ( ~ 2 c 2  -3 l- m2c 4 - -  2echB ~ S)1/2 (2) 

where 

fl  = P - e AO(r ) _ e A(rl ' t) (generalized momentum) 
c r 

(3) 
1 BO (external vector potential) A ~  xr 

and A(ri) is self-consistent vector potential; the group velocity is given by 
(Genga, 1992a,b,d) 

V i = y - l fl__2~ (4) 
m 

where 
U2,~_ 1/2 

~-~= 1+~)  

the relativistic factor with u defined as 

(.lI2-2ehc-1B~ �9 S)'/2 
I1----- mE 

(5) 

(6) 
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Since I am only interested in the response function of the electron system, 
I first take the Fourier transform (1) followed by the expectation value of 
the resultant to obtain 

(J~(o~) ) = e (,j~(co) ) - eZN 7 - 1T~A ~, (co) (7) 
mc 

By applying perturbation theory (Pines and Nozi6res, 1966; Genga, 1988a,b, 
1989, 1992a-d),  it is found that 

<, ;~(~o)>  = - ~ o - ~ ( O l n ~ ( ~ ) l n > ( n i n = ~ ( O ) [ O >  

x ~o --o~.o(p, p + hk/2) + iq o ~ + o ~ . o ( p , p - h k / 2 ) + ~  j 

(8) 

where 

with 

1 
[I~ = ~ ~ (Vf e -k .x~ + e +,1,. xiV~) 

-7 
(9) 

m (10) 

l-If = e~ - e AO.(x,) 
C 

For the argument of CO,o as well as the summation over P in the equation, 

p=p~ ,  k = k ~ ,  s =  +s~ (11) 

From equations (7) and (8) it is found that 

e2 I NT- '  t aUV(kc~ ZUV(k~ m T[v (12) 

where ~(U~(kw) is the electron response tensor defined as 

Z'~(k~) = Z (O[n~(~)In ) ( n  [nL~ (0)IO) 
np  

• ' 
co - o~,~(p, p + hk/2) + it/ 

Since e~V(ke)) and aUV(kco) are interrelated as 

�9 4~e 2 
a"V(kco) = l - -  euv(kr (14) 

CO 

1 1 (23) 
co - r p -- hk/2) + it/ 
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then from equations (12) and (14) it is found that 
2 

~,u,,(ko9 ) - -  cop iT~v + 8~,V(kco ) 

where 

Genga 

(15) 

8~'"(ko9) = 4roe 2 ~ (kog) (16) 
o9 

The matrix elements and excitation frequencies that appear in equa- 
tion (16) are those appropriate for a system of electrons with Coulomb, 
spin, and external magnetic field interactions. 

2. T R A N S V E R S E  S U M  RULES 

The complete modified polarizability tensor ~'V(kco) is known to be 
expressible in terms of corresponding "external" quantities gU~(kog) as 

a(kog) = 8(kw)[A - ~(kog)] -XA (17) 

where 

with 

A = ~ - -  n Z T  

kc 
n ~ -  

O9 

k ' k  
T = ~ - - -  

k z 

(18) 

--- 1 (19) 
0 

~'V(kog) is known to possess a high-frequency sum-rule expansion given by 

~n,~v(kco)=_ ~ f~f~-l(k) 
t=l cot+l (20) 

l = o d d  
A 

~"'~'(kog)=- Y~ ta~r~,(k) 
/ =  2 0)1+ I (21) 

l ffi even 

where superscript H denotes "Hermitian part of," while prime and double 
prime stand for "real part of" and "imaginary part of," respectively; the 
~f~.l(k) coefficients are obtained from the relation (Genga, 1988a,b, 1989, 
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1992a-d) 

f~f~-I = (k)  = ~4~e2 ~s O,.o , p - - y ) J  <olne(ol.><.lmk(o)lo> 

- + - -  < O l l I  v k(~) I_eg.o(p, p h k \ q ' - 2  2 )J _ [n)<nlIIl~(z)[O>},=o (22) 

The high-frequency expansion of ~U~(ko) is similar to that of ~v(kog) 
given by equations (20) and (21) with ~ _  l(k) replacing the correspond- 
ing ~'~_~(k); the relationship between the two sets of coefficients up to 
1 = 4 is the same as for the nonrelativistic case. 

The Harniltonian of the system that satisfies equation (24) is given by 

= ~  my2 1 
n ~ -  1+~2. ,  U( lx , -x j l )  

�9 . ~ : j  

ij 

= ~ r - 2 ~ m  + ~  ~ U(lx/-xj[)  (23) 
iq:j 

where U(Ixe - xj [) is the velocity-independent interaction potential between 
a pair of particles. 

Finally, the evaluation of the frequency moments (up to I = 4) is 
considered. It is known that in an anisotropic system, in the presence of an 
external magnetic field, the dielectric tensor has six independent elements; 
consequently, :~v is nondiagonal. Hence, both even and odd moments of 
~'~_ ~(k) exist with real diagonal and off-diagonal elements satisfying the 
symmetric condition 

~f~kl (k) = ~yu+, (k) (24) 

and the imaginary off-diagonal elements satisfying the antisymmetric con= 
dition 

fi~-I (k) -- --fi~l (k) (25) 

The first moment leads to 

fi~V(k) =4he: Z [-<~176176 + <O[=~-~(O)ln ><nln~(~)lO>-] 
.i, L ~ p + hk/2) og.o(p, p - hk/2) J~=o 

where 

= ~- 'o~ L~ v (26) 

k~k v 
L~= k2 (27) 
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The second moment leads to 

~ ( k )  4~e2 
=--h- -  Z [<olne(~)l .  > < n l W - ~ ( ~ 1 7 6  <olrr-~(O)ln><,,In~,(~)to>]~=o 

np 

2ue 2 
= h [<o{[r i~(~) ,  rr'_k(o)] - [w_k(o) ,  n~(~)][o>]~=o 

. . . 2 . - 2  eB~ 
= ~tOp r ,, t "~" (28) 

mc 

The third moment is given by 

^ ~4rce2- -[OO,o(p ,p- -?) (O, l - l~(z ) [n) (n lHLk(O)[  

--cO,,o(P,P+?)(Oll- l~-k(O)'n)(n'Yl[,(z)[O)]~:= ~ 

2ue 2 
= h2 <Olffne(z),/~, m,(O)]  + [[rr_,(o),/-O, rI~,(~)]lo>l~=o 

2 0 
= ~ -4 CopeB~ k~,(Ole~,n,. O O O 

eB ~ co~eB ~ _ ~,~ 0 
+ i : "  - -  (x ~ - x")lo> - v - '  2me ~ k~'(Oe " Ox ~ 

eB o -2eBO 
+ i~"~ ~mc Z~[O) - v --4 t'O~__~C ~/k,,(O[~,,n~, Ox ~ -  ~ ieu,~,, .~me Z~,[O) eB~ 

2 0 ~2 0 
_ ~, -4 c%eB.  k~k.(Ol2mc(eBO ) _ 1 _ _  + it~#Za _ _  

2mc ~X~'OZ ~ OZ ~ 

_ i t , .  ~ O B ~ _ _ _  eu't:' elJTI ( x , ) 2 1 0 )  
~g ~ 2mc 

. -4  .2 e a~  k~,k~(Ot2mc(eBO)-, 02 

+ it "~ ~ -- etm "z---- (x") 10) 
vZ zmc 

eB 02 0 
--4 2 k~k~(Oi2mc(eBO)-,  ie . . .  Z ,  

-- y o~p zmc  ~ Z ~  ~ OX ~' 

~.- eB ~ 
_ i~,,ruX:, ~ + [e,,,,l~,(Z,,)',6u,, _ tu,7 Z'X ] ~ lO) 

_2 4 (01L~,, + 1 .Z L~ ' (Sm , -q -  Sk)[ O) (29) + y cop 
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The fourth moment leads to 

41re2~ { I t~176  p ' p  -~ ) l (O] l - I~ ( z ) [n ) (n[ I I - k (O)]  O) 

- - o o .  o , p  + n ) ( n  
v = O  

2~:e 2 
h3 <ol[[[n~,, n l ,  I-II, i nk ( o ) ]  -[[[W_~(o), I-l], h i ,  m~(z)][o>l~= o 

e~ eB~ . . . .  , . . . . . .  (eB~ 2 ;/~ 
= - - 7 - 6  -4~mc K qv[e ~''0 ~ 4m2c 2 

~, _ _  (eB~ 2 0 7 eB ~ 0 e v ~ ,  ~. r ~.~2 
+ -4 eF'"~ m----~ g OZ~ + -8m2c 2 , X j  OZ u 

e o 2 (eBO)3 
+ ~'~"= ( B ~ )  c~ .~  - ~  - i ~ .  (X;) ~ 

8m2c 2 ~^ , Og~ 16mac 3 

(~2 ^B o . 02 
+ i6eu,~,~6~,~ eB ~ 0 [0) --6 ,pe 'o~ /  ~ ,u �9 / ,u~v 

mc OX ~ - 7 4mc k k (0It 4 e 0Z.0Z~ 

17 eB ~ v 0 7 e ~"~ (eB~ 2 (x~)2[0) 
+ - 8  e'~~ rnc Z -f~x~ + i-~ m2c 2 

2 0 7 0 2 17 eB~ 4, ~ 
- -  • --60gpeB~ k~k~(Oli e u"~ b e u"" ' 

4mc aZ~OZ ~ "-8 -~c X OZ ~ 

7 (eB~ 2 2 o 
- - - 6 0 0 p e B ~  k~k~(Oli6#,.~, 

+ i '4 eu"~ m2c 2 (x~)210)-7 4mc 

0 2 3 0 2 ~ eB ~ 
+ i6e ~''Tv OZ~,OZ------------ ~ + i ~  e u"v - -  + e~'n~'6~'~ 

OZ~OZ ~ mc 

+3evn. 'B~ v • e e  ~  O 15 (eB ~ 
mc Z ~ + 3e~"~ - -  i e "~ (Zu) 2 mc OZ ~ - -4- m2c 2 

B o 
+ ieu,l~(Zv _ Z~,) eB~ l0 ) + :. - - 4 .  4 e . (01L~ 

m---~ "Y ~ ~ 2m---~ 

1 
+ ~ Z (eU~'L,~ ~ + e~"VLqU)(Sk-, -- Sk)]0) 

q 

I choose the k system in which 

0 2 

0X~0X ~ 

k = ( o ,  o, k) 

(30) 

B ~ = (a ~ o, oo) (31) 
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and 
qx = q sin 0 cos 0 

qy = q sin 0 sin 0 (32) 

q~ = q cos 0 

to obtain an explicit expression ~'~-l(k). Further, the Landau gauge 

1 
A ~ = ~ (0, B~ - ZB ~ 0) (33) 

is used to obtain components of the external magnetic field given by 
equation (31). The wave function 10) is known (Johnson and Lipmann, 
1949; Genga, 1992d) to be given by 

10 ) = (2r01/22 -1 e(y- y0)2/42 + iPz/h (34) 

where 
h 

mf~ 

2c py 
y o  = - - -  (35) e 

y = BO x _ B O  z c =e P, 
and ~ = --eB~ is the electron cyclotron frequency. 

3. LONG-WAVELENGTH LIMIT 

In the long-wavelength limit (k ~ 0 )  equations (26)-(32) yield 

fi~' (k)  = fi~2(k) = 0 

f i~(k)  
f i~(k)  
fi]~(k) 

fi~3(k) 

f i~(k)  

fi~3(k) 

1 2 =y- ogp 
= - ~ ' ( k )  = i~-:o~n cos 0 

= -h•2(k) = i~ -2o9~ f~ sin 0 

= fi,~(k) = - 2 r - % ~ e o o ~ k  ~ 
= fi,~'(k) = 0  

~--4 0")P2 (3 ~ ))2 ) -2 4 ( 4 
= Y me - m 15 ?2E~176 k2 

C,7, ) 0 -fi~a(k) = ir-6 (-~ n t-~5 r2Ecorr k2cos 

= _fi~2(k ) = _/~-~c~ .(15 ) ) 2  E~o~)k sinO 

(36) 
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where P~) is the lowest Landau level Fermi momentum and Eeorr is the 
(negative) correlation energy per particle. 

4. SPIN EFFECT 

The spin effect on the undamped high-frequency, quasi-one-dimen- 
sional quantum plasma waves in an external magnetic field is considered in 
this section by using the high-frequency sum rules. The high-frequency 
modes of interest are the "ordinary" and "extraordinary" modes with 
cutoff frequency co2 = �89 1 + ( 1 + 4~ 2/l) 2) la]; all the modes propagating 
along and across the external magnetic field are considered in a coordinate 
system where k = (0, 0, k) and B ~ is in the x - y  plane; i.e., the k system. 

4.1. Ordinary Mode 

It is known (Genga, 1988b, 1989, 1992c-d) that for propagation 
along and across the external magnetic field the ordinary mode does not 
exist; however, for parallel propagation, the longitudinal mode oscillating 
at the frequency exists instead. When a small perturbation is applied to the 
dispersion relation the plasmon frequency of the form 

a~2(k)=7-1to 1 - 7  -5/20--s 6E F -  72Eeorr k 2 (37) 
m 

is found, where 

(p?))2 
EF = - -  (38) 

2m 

is the Fermi energy per particle corresponding to the lowest Landau level. 
From equation (37) it can be seen that the spin term either enhances or 
reduces the frequency of oscillation, depending on the orientation of the 
spin to the external magnetic field, unlike in the nonrelativistic quantum 
plasma case (Genga, 1992c), where it is found that the spin effect does not 
exist for such waves; this can also be confirmed by setting y = 1 in equation 
(37). Further, by setting s = 0 in equation (37), the result of the relativistic 
quantum plasmas without spins (Genga, 1992d) is recovered. 

4.2. Extraordinary Mode 

In this case it is found that an application of a small perturbation to 
the dispersion relation leads to a frequency of oscillation of the form 

a~2(k)=y_,co2F 1 2 rJC 2 7-2a~ 2 \ "] + 2 Eoorr)k2J (39) L 
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for propagat ion along the external magnetic field, and 

{ 1/2[C2 "~'~--4( "~ )] } 
092=?- '~02  1 + ~ L 0 9 ~  rn~ 3EF--  72E~o,, k 2 (40) 

for propagation across the external field, i.e., 0 = 90 ~ From equations (39) 
and (40) it can be seen as in equation (37) that the spin term either 
enhances or reduces the frequency of  oscillation, depending on the orienta- 
tion of  the spin to the external magnetic field, unlike in the nonrelativistic 
quantum plasma case (Genga, 1992c); the results of  the nonrelativistic case 
can be obtained f rom equations (39) and (40) by setting ? = 1. Further,  by 
setting s = 0 the results for relativistic quantum plasmas without spins 
(Genga, 1992d) are recovered. 

REFERENCES 

Baym, G. (1974). Lectures on Quantum Mechanics, Benjamin, New York. 
Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, M. B. (1978). Relativistic Quantum Theory, 

Part I, Vol. 4, Pergamon Press, Oxford. 
Bjorken, J. D., and Drell, S. D. (1964). Relativistic Quantum Mechanics, McGraw-Hill, New 

York. 
Genga, R. O. (1988a). African Journal of Science and Technology A, 9, 47. 
Genga, R. O. (1988b). International Journal of Theoretical Physics, 27, 85. 
Genga, R. O. (1989). Discovery and Innovation, 1, 38. 
Genga, R. O. (1992a). Kenya Journal of Science and Technology B, submitted. 
Genga, R. O. (1992b). International Journal of Theoretical Physics, submitted. 
Genga, R. O. (1992c). International Journal of Theoretical Physics, in press. 
Genga, R. O. (1992d). International Journal of Theoretical Physics, submitted. 
Goldstone, J. (1957). Proceedings of the Royal Society A, 239, 269. 
Jancovici, B. (1962). Nuovo Cimento, 25, 428. 
Johnson, M. H., and Lipmann, B. A. (1949). Physical Review, 76, 828. 
Pines, D., and Nozirres, P. (1966). The Theory of Quantum Liquids, Vol. 1, Benjamin, New 

York. 
Sakurai, J. J. (1987). Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachu- 

setts. 


